Using unitarity to perform precision top measurements

Strong tW scattering at the LHC arXiv:1510.xxxx

Jeff Asaf Dror ¹, Marco Farina ², Javi Serra ³, and Ennio Salvioni⁴

¹Department of Physics, LEPP, Cornell University, Ithaca, NY 14853, USA

 $^2\mbox{New High Energy Theory Center, Rutgers University, Piscataway, NJ 08854, USA$

 $^3\mathrm{Department}$ of Physics, University of California, Davis, Davis CA 95616, USA

⁴Dipartimento di Fisica e Astronomia, Università di Padova and INFN, Sezione di Padova, Via Marzolo 8, I-35131 Padova, Italy

Standard Model - still standing

 The Standard Model has been thoroughly tested by previous expts

 LHC can have big impact on parameters relating t, h

 If no new particles found at LHC, measuring SM parameters is our future

Excellent way to probe SM consistency

Interestingly, outliers in the 3rd generation

Unitarity

- If SM parameters deviate from theory \Rightarrow amplitudes grow with energy (think $WW \to WW$)
- Such processes can be searched for at LHC
- Can use this feature to put constraints on SM couplings
 - ightarrow Idea used to measure y_t 1211.3736: Farina, Grojean, Maltoni, Salvioni, Thamm 1211.0499: Biswas, Gabrielli, Mele
- Case study: $tW \rightarrow tW$ to probe Zt_Lt_L , Zt_Rt_R couplings
 - ullet Currently measured through tar t Z
 - 8TeV 95% direct limits ($\Delta_i \equiv (g_{Zt_it_i} g_{Zt_it_i}^{SM})/g_{Zt_it_i}^{SM}$):

$$-3 \lesssim \Delta_L \lesssim 1$$
 $-6 \lesssim \Delta_R \lesssim 4$ Weak bounds!

 Stronger indirect limits but can be avoided depending on model details • $tW \rightarrow tW$ scattering (electroweak (EW) process):

• Sensitive to $g_{Zt_Rt_R}$, $g_{Zt_Lt_L}$, g_{Wtb} , g_{WWZ} , ...

Poorly constrained

Amplitudes can EXPLODE!

• Quick calculation $\rightarrow \mathcal{M} \sim s$ for $g_{Zt_Rt_R}, g_{Zt_Lt_L} \neq \mathsf{SM}$ values.

Existing $t\bar{t}W$ search

Same-sign ℓ

- \bullet CMS performed a search for $t\bar{t}W$ cms, 1406.7830
- Only included $\mathcal{O}(g_s^{2+n}g_w)$ contributions (σ_{QCD}) in $t\bar{t}W$ estimations, e.g.,

- ullet EW process contributes at $\mathcal{O}(g_sg_w^3)$
 - $_{f 0}$ Small in SM but can be large if $\Delta_L, \Delta_R \neq 0$
- Expected=39.7, Observed=36
- ullet Can put limit on size of σ_{EW} and hence (Δ_L,Δ_R)

 Simulate EW signal as function of coupling deviations (applying CMS cuts). Find,

$$\sigma_{EW}(\Delta_L, \Delta_R)$$

- Madgraph, Pythia, PGS
- Right: compare new $t\bar{t}W$ limits with traditional $t\bar{t}Z$ search at $8{\rm TeV}$
- Significantly better limits even without dedicated search!

13TeV dedicated search

- At 8 TeV existing search happened to be sensitive to signal
- Would like to have dedicated search
- Unitarity effects become more pronounced at higher energies
- Goal:
 - 1 Simulate backgrounds and signal
 - 2 Find optimal cuts for $\mathcal{L} = 300 \text{fb}^{-1}$, 13TeV.
 - 3 Produce projected limits

(not to scale)

Simulation and Backgrounds

- Simulate all bkg at 8TeV
 - Matched at LO
 - Rescale to NLO values
- Compare distributions to those found by CMS
- Use the CMS search to calibrate monte carlo for 13TeV (important for tricky backgrounds such as $\text{misID}\ell$, misIDQ)
- Dominant bkgs:

$$\begin{array}{c} (t\bar{t}W)_{QCD} \text{ , } t\bar{t}Z, \text{ misID}Q, \ t\bar{t}h, \ (W^\pm W^\pm j^n), \ \underset{}{\text{misID}\ell} \\ \text{ electron given } \eta \text{ - dependent misidentified charge } \\ \text{ b as } \ell \text{ with smeared } p_T \\ \text{ prob } \\ \end{array}$$

Optimization

ullet Dominant backgrounds ($(t\bar{t}W)_{QCD}$ and $MisID\ell$) are reducible!

 \bullet Best cuts: CMS $t\bar{t}W$ cuts + $p_T^{\ell_1}>100{\sf GeV},\ \rlap/E_T>50{\sf GeV},\ m_{\ell\ell}>125{\sf GeV}$ $|\eta_{FJ}|>1.75\ ,\ d\eta_{FJ_1,FJ_2}>2$

13 TeV limits

- \bullet Assuming $N_{obs}=N_{bkq}$ we can get 13TeV projected limits
- $_{ullet}$ Used likelihood and assumed 50% systematic on misID ℓ

Higher Dimensional Operators (HDO)

• Above SM couplings, what about HDO?

$$\begin{split} \mathcal{L} \supset \frac{ic_L^{(1)}}{\Lambda^2} H^\dagger D_\mu H \bar{q}_L \gamma^\mu q_L + \frac{ic_L^{(3)}}{\Lambda^2} H^\dagger \sigma^i D_\mu H \bar{q}_L \gamma^\mu \sigma^i q_L \\ + \frac{ic_R}{\Lambda^2} H^\dagger D_\mu H \bar{t}_R \gamma^\mu t_R \end{split}$$

where $\epsilon \equiv i\sigma^2$.

$$\frac{\delta g_{Zt_Lt_L}}{g_{Zt_Lt_L}^{SM}} = \frac{c_L^{(3)} - c_L^{(1)}}{\left(1 - \frac{4}{3}s_W^2\right)} \frac{v^2}{\Lambda^2}, \quad \frac{\delta g_{Zb_Lb_L}}{g_{Zb_Lb_L}^{SM}} = \frac{c_L^{(1)} + c_L^{(3)}}{\left(1 - \frac{2}{3}s_W^2\right)} \frac{v^2}{\Lambda^2}$$

$$\frac{\delta g_{Wt_Lb_L}}{g_{Wt_Lb_L}^{SM}} = c_L^{(3)} \frac{v^2}{\Lambda^2}, \quad \frac{\delta g_{Zt_Rt_R}}{g_{Zt_Rt_R}^{SM}} = \frac{c_R}{\frac{4}{3}s_W^2} \frac{v^2}{\Lambda^2}$$

HDO limits

What else you got?

$$bW \rightarrow tZ$$

- Probed in tZj
- $\sigma \sim s$
- Mainly sensitive to $\Delta_L(c_L^{(1)})$
- $bW \rightarrow th$
 - Probed in thj
 - $\sigma \sim s$
 - ullet Already used to measure y_t
- $tZ \rightarrow th$.
 - Probed in $t\bar{t}hj$
 - $\sigma \sim \sqrt{s}$
 - Sensitive to Δ_L, Δ_R, y_t

D ...

Many opportunities for future study

Conclusions

- We can use unitary to measure parameters in the SM
- Considered $tW \to tW$ as a case study
- Improved measurement at 8TeV
- Significant improvements on measurement can be made for 13TeV analysis
 - NLO analysis? Better optimization? Combining channels?
- How far we can push this idea?
- Let's see whats out there!

